首页> 外文期刊>Image Processing, IET >Hyperspectral band selection using crossover-based gravitational search algorithm
【24h】

Hyperspectral band selection using crossover-based gravitational search algorithm

机译:使用基于交叉的引力搜索算法选择高光谱波段

获取原文
获取原文并翻译 | 示例

摘要

Band selection is an important data dimensionality reduction tool in hyperspectral images (HSIs). To identify the most informative subset band from the hundreds of highly corrected bands in HSIs, a novel hyperspectral band selection method using a crossover-based gravitational search algorithm (CGSA) is presented in this study. In this method, the discriminative capability of each band subset is evaluated by a combined optimisation criterion, which is constructed based on the overall classification accuracy and the size of the band subset. As the evolution of the criterion, the subset is updated using the V-shaped transfer function-based CGSA. Ultimately, the band subset with the best fitness value is selected. Experiments on two public hyperspectral datasets, i.e. the Indian Pines dataset and the Pavia University dataset, have been conducted to test the performance of the proposed method. Comparing experimental results against the basic GSA and the PSOGSA (hybrid PSO and GSA) revealed that all of the three GSA variants can considerably reduce the band dimensionality of HSIs without damaging their classification accuracy. Moreover, the CGSA shows superiority on both the effectiveness and efficiency compared to the other two GSA variants.
机译:波段选择是高光谱图像(HSI)中重要的数据降维工具。为了从HSI中的数百个高度校正的波段中识别出最有信息的子波段,本研究提出了一种使用基于交叉的重力搜索算法(CGSA)的新型高光谱波段选择方法。在这种方法中,每个频段子集的判别能力通过组合优化标准进行评估,该标准是基于总体分类精度和频段子集的大小构造的。随着准则的发展,使用基于V形传递函数的CGSA更新了子集。最终,选择具有最佳适应度值的波段子集。已经对两个公共高光谱数据集(即印度松树数据集和帕维亚大学数据集)进行了实验,以测试该方法的性能。将实验结果与基本GSA和PSOGSA(混合PSO和GSA)进行比较后发现,这三个GSA变体都可以在不损害其分类准确性的情况下,大大降低HSI的条带尺寸。此外,与其他两个GSA变体相比,CGSA在有效性和效率上均显示出优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号