首页> 外文期刊>Neural processing letters >Modeling the Random Drift of Micro-Machined Gyroscope with Neural Network
【24h】

Modeling the Random Drift of Micro-Machined Gyroscope with Neural Network

机译:基于神经网络的微加工陀螺仪随机漂移建模

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new combined method was applied to model the random drift of a micro-electro-mechanical system (MEMS) gyro to enhance its performance. The gyro is used to set up a micro-inertial -measurement unit (MIMU) for its low cost, low power consumption and small dimensions. To improve the MIMU's performance, we model the gyro's random drift by a statistic method. Given the paucity of the knowledge of fabrication of the gyro, we select a neural network model instead of making a delicate physical-mathematical model. Since the gyro we used is a tuning fork micro-machined sensor with large random drift, the modeling performance is affected by the randomness inherent in the output data when neural network approach is applied. Therefore, radial basis network structure, which was successfully applied to model temperature drift of fiber optical gyros, was chosen to build the model and the grey neural network. Compared with autoregressive model, the standard error of the gyro's random drift is reduced dramatically by radial basis model and grey radial basis model.
机译:本文采用一种新的组合方法来对微机电系统陀螺仪的随机漂移进行建模,以提高其性能。陀螺仪因其低成本,低功耗和小尺寸而被用于建立微惯性测量单元(MIMU)。为了提高MIMU的性能,我们通过统计方法对陀螺仪的随机漂移进行建模。鉴于陀螺仪制造知识的匮乏,我们选择了神经网络模型,而不是建立精细的物理数学模型。由于我们使用的陀螺仪是具有大随机漂移的音叉微机械传感器,因此当应用神经网络方法时,建模性能会受到输出数据中固有的随机性的影响。因此,选择了成功应用于光纤陀螺仪温度漂移模型的径向基网络结构来建立模型和灰色神经网络。与自回归模型相比,径向基模型和灰色径向基模型显着降低了陀螺仪随机漂移的标准误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号