首页> 外文期刊>Neural processing letters >Associative Learning of Integrate-and-Fire Neurons with Memristor-Based Synapses
【24h】

Associative Learning of Integrate-and-Fire Neurons with Memristor-Based Synapses

机译:集成和解雇神经元与基于忆阻器的突触的联合学习。

获取原文
获取原文并翻译 | 示例

摘要

A memrsitor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. In this paper, we present a class of memristor-based neural circuits comprising leaky integrate-and-fire (I & F) neurons and memristor-based learning synapses. Employing these neuron circuits and corresponding SPICE models, the properties of a two neurons network are shown to be similar to biology. During correlated spiking of the pre- and post-synaptic neurons, the strength of the synaptic connection increases. Conversely, it is diminished when the spiking is uncorrelated. This synaptic plasticity and associative learning is essential for performing useful computation and adaptation in large scale artificial neural networks. Finally, future circuit design and consideration are discussed with the memristor-based neural networks.
机译:忆阻器是一种两端电子设备,其电导率可以通过电荷或通过它的通量来精确调节。在本文中,我们提出了一类基于忆阻器的神经回路,包括泄漏的集成点火(I&F)神经元和基于忆阻器的学习突触。利用这些神经元回路和相应的SPICE模型,两个神经元网络的属性显示出与生物学相似的特性。在突触前和突触后神经元的相关峰值期间,突触连接的强度增加。相反,当尖峰不相关时,它会减小。这种突触可塑性和联想学习对于在大规模人工神经网络中执行有用的计算和适应至关重要。最后,使用基于忆阻器的神经网络讨论了未来的电路设计和考虑。

著录项

  • 来源
    《Neural processing letters》 |2013年第1期|69-80|共12页
  • 作者单位

    Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China,Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China;

    Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China,Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China;

    Texas A & M University at Qatar, Doha 5825, Qatar;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Memristor; Associative learning; Neural network; Synaptic weight;

    机译:忆阻器联想学习;神经网络;突触重量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号