首页> 外文期刊>Neural processing letters >A Competitive Neural Network for Multiple Object Tracking in Video Sequence Analysis
【24h】

A Competitive Neural Network for Multiple Object Tracking in Video Sequence Analysis

机译:用于视频序列分析的多目标跟踪的竞争神经网络

获取原文
获取原文并翻译 | 示例

摘要

Tracking of moving objects in real situation is a challenging research issue, due to dynamic changes in objects or background appearance, illumination, shape and occlusions. In this paper, we deal with these difficulties by incorporating an adaptive feature weighting mechanism to the proposed growing competitive neural network for multiple objects tracking. The neural network takes advantage of the most relevant object features (information provided by the proposed adaptive feature weighting mechanism) in order to estimate the trajectories of the moving objects. The feature selection mechanism is based on a genetic algorithm, and the tracking algorithm is based on a growing competitive neural network where each unit is associated to each object in the scene. The proposed methods (object tracking and feature selection mechanism) are applied to detect the trajectories of moving vehicles in roads. Experimental results show the performance of the proposed system compared to the standard Kalman filter.
机译:由于物体或背景外观,照明,形状和遮挡物的动态变化,在真实情况下跟踪运动物体是一个具有挑战性的研究问题。在本文中,我们通过将自适应特征权重机制合并到拟议中的不断增长的竞争性神经网络以进行多对象跟踪来解决这些困难。神经网络利用最相关的对象特征(建议的自适应特征加权机制提供的信息)来估计运动对象的轨迹。特征选择机制基于遗传算法,而跟踪算法基于不断发展的竞争神经网络,其中每个单元与场景中的每个对象相关联。提出的方法(目标跟踪和特征选择机制)被应用于检测道路上行驶中的车辆的轨迹。实验结果表明,与标准卡尔曼滤波器相比,该系统的性能更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号