首页> 外文期刊>Neural processing letters >Lagrange p-Stability and Exponential p-Convergence for Stochastic Cohen-Grossberg Neural Networks with Time-Varying Delays
【24h】

Lagrange p-Stability and Exponential p-Convergence for Stochastic Cohen-Grossberg Neural Networks with Time-Varying Delays

机译:具有时变时滞的随机Cohen-Grossberg神经网络的Lagrange p稳定性和指数p收敛

获取原文
获取原文并翻译 | 示例

摘要

This paper focus on the problem of p-stability in Lagrange sense and exponential p-convergence for stochastic Cohen-Grossberg neural networks with time-varying delays. By using a delay l-operator differential inequality, and coupling with Lyapunov method and stochastic analysis techniques, some sufficient conditions are derived to guarantee Lagrange p-stability and the state variables of the discussed stochastic Cohen-Grossberg neural networks with time-varying delays to converge, globally, uniformly, exponentially to a ball in the state space with a pre-specified convergence rate. Meanwhile, the exponential p-convergent balls are also estimated. Here, the existence and uniqueness of the equilibrium point needs not to be considered. Finally, some examples with numerical simulations are given to illustrate the effectiveness of our theoretical results.
机译:本文关注具有时变时滞的随机Cohen-Grossberg神经网络在Lagrange意义上的p稳定性和指数p收敛的问题。通过使用时滞l算子微分不等式,并结合Lyapunov方法和随机分析技术,得出了一些充分的条件,以保证Lagrange p-稳定性和所讨论的时变时滞为随机的Cohen-Grossberg神经网络的状态变量。以预先指定的收敛速度全局,均匀,指数地收敛到状态空间中的球。同时,还估计了指数p收敛球。在此,无需考虑平衡点的存在和唯一性。最后,给出了一些带有数值模拟的例子来说明我们理论结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号