首页> 外文期刊>Neural processing letters >Robust Video Face Recognition Under Pose Variation
【24h】

Robust Video Face Recognition Under Pose Variation

机译:姿态变化下的鲁棒视频人脸识别

获取原文
获取原文并翻译 | 示例

摘要

With the abundance of video data, the interest in more effective methods for recognizing faces from surveillance videos has grown. However, most algorithms proposed in this field have an assumption that each image set lies in a single linear subspace, or a mixture of linear subspaces. As a result, 3-dimensional shape information, which leads to the nonlinear transformation of face images, is ignored. This paper proposes a robust video face recognition across pose variation in video (RVPose) based on sparse representation. The key idea is performing alignment and recognition based on sparse representation simultaneously. Moreover, by considering that multi-pose faces of the same subject possess the same texture and 3-dimensional shape, RVPose aligns a sequence of faces with pose variations simultaneously, which is reduced to a 3-dimensional shape-constrained video alignment problem. Finally, aligned video sequence is recognized based on sparse represent. Experiments conducted on public video datasets demonstrate the effectiveness of the proposed algorithm.
机译:随着视频数据的丰富,人们越来越关注从监视视频中识别人脸的更有效方法。但是,在该领域中提出的大多数算法都假设每个图像集位于单个线性子空间或线性子空间的混合中。结果,导致面部图像的非线性变换的3维形状信息被忽略。本文提出了一种基于稀疏表示的跨视频姿势变化(RVPose)的鲁棒视频人脸识别。关键思想是基于稀疏表示同时执行对齐和识别。此外,通过考虑相同对象的多姿势面部具有相同的纹理和3维形状,RVPose同时对准具有姿势变化的一系列面部,这被减少为3维形状约束的视频对准问题。最后,基于稀疏表示来识别对齐的视频序列。在公共视频数据集上进行的实验证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号