首页> 外文期刊>Expert Systems with Application >Video-to-video face authentication system robust to pose variations
【24h】

Video-to-video face authentication system robust to pose variations

机译:视频到视频人脸认证系统具有强大的姿势差异性

获取原文
获取原文并翻译 | 示例

摘要

High-quality still-to-still (image-to-image) face authentication has shown success under controlled conditions in many safety applications. However, video-to-video face authentication is still challenging due to appearance variations caused by pose changes. In this paper, we propose a video-to-video face authentication system that is robust to pose variations by making use of synthesized frontal face appearance that contains both texture and shape information. To obtain the appearance, we first reconstruct 3D face shape from face feature points detected from the video using active shape model (ASM). Conventional ASM algorithms cannot handle large pose variations and fast head movement exhibited in video sequences. To address these problems, we present a novel prediction-assisted approach that is capable of providing an accurate shape initiation as well as automatically switching on multi-view models for ASM. Then we can generate frontal shape mesh from the reconstructed 3D face shape. Based on the mesh, we synthesize frontal face appearance with the ASM-detected faces in video. For authentication, in order to match the synthesized appearances of enrollment and probe, we propose a 2-directional 2-dimensional client specific fisher's linear discriminant algorithm. The proposed algorithm is a variant of fisher's linear discriminant (FLD) and directly computes eigenvectors of image scatter matrices in row and column direction without matrix-to-vector conversion. In experiments, our authentication system is compared with the other state-of-art approaches on public face database and our face database. The results show that our system demonstrates a higher authentication accuracy and pose-robust performance.
机译:在许多安全应用中的受控条件下,高质量的静止图像(图像到图像)面部认证已显示出成功。然而,由于姿势变化引起的外观变化,视频对视频的面部认证仍然具有挑战性。在本文中,我们提出了一种视频到视频的面部认证系统,该系统可通过使用既包含纹理信息又包含形状信息的合成正面面部外观来稳健地构成姿势变化。为了获得外观,我们首先使用主动形状模型(ASM)根据从视频中检测到的面部特征点重建3D面部形状。传统的ASM算法无法处理较大的姿势变化和视频序列中出现的快速头部移动。为了解决这些问题,我们提出了一种新颖的预测辅助方法,该方法能够提供准确的形状起始以及自动为ASM切换多视图模型的能力。然后,我们可以从重建的3D面部形状生成正面形状网格。基于网格,我们将正面脸部外观与视频中ASM检测到的脸部进行合成。对于身份验证,为了匹配注册和探针的综合外观,我们提出了一种二维二维特定于客户的费舍尔线性判别算法。提出的算法是Fisher线性判别式(FLD)的一种变体,可以直接计算行和列方向上的图像散射矩阵的特征向量,而无需矩阵到向量的转换。在实验中,我们的身份验证系统与其他有关公众面部数据库和面部数据库的最新方法进行了比较。结果表明,我们的系统显示出更高的身份验证准确性和稳健的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号