首页> 外文期刊>Neural processing letters >SRCNN-PIL: Side Road Convolution Neural Network Based on Pseudoinverse Learning Algorithm
【24h】

SRCNN-PIL: Side Road Convolution Neural Network Based on Pseudoinverse Learning Algorithm

机译:SRCNN-PIL:基于伪学习算法的侧路卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks offer advanced procedures for many learning tasks because of the ability to extract preferable features at every network layer. The evolved efficiency of extra layers inside a deep network will come at the expense of appended latency and power consumption in feedforward inference. As networks continue to grow and deepen, these outcomes become exceedingly prohibitive for energy-sensitive and real-time software. To overcome this problem, we propose the Side Road Network (SRN), an innovative deep network structure that is enhanced with further side road (SR) classifiers. The SR classifiers are trained by Pseudoinverse learning algorithm (PIL). The PIL algorithm does not integrate crucial user-dependent parameters such as momentum constant or learning rate. The SRN structure allows the prediction of results for a major portion of test samples to exit the network earlier via these SR classifiers since samples can be inferred with certainty. We analyze SRN structure using different models such as VGG, ResNet, WRN, and MobileNet. We evaluate the performance of SRN on three image datasets-CIFAR10, CIFAR100, and Tiny ImageNet-and show that it can improve the model prediction at earlier layers.
机译:深度神经网络为许多学习任务提供高级程序,因为能够在每个网络层中提取优选的特征。深度网络内额外层的进化效率将以馈电推断的延迟和功耗为代价。随着网络继续增长和加深,这些结果对于能敏和实时软件来说非常令人望而却步。为了克服这个问题,我们提出了一种侧面道路网络(SRN),这是一种创新的深网络结构,其具有进一步的侧面道路(SR)分类器。 SR分类器是由伪敏感学习算法(PIL)培训的。 PIL算法不整合至势势常数或学习率的重要用户相关参数。 SRN结构允许预测通过这些SR分类器之前预测测试样本的主要部分以通过这些SR分类器退出网络,因为可以通过确定样本来推断出样本。我们使用不同型号进行分析SRN结构,如VGG,Reset,WRN和MobileNet。我们评估SRN在三个图像数据集 - CiFar10,CiFAR100和微小想象中的性能 - 并且表明它可以改善早期层的模型预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号