首页> 外文期刊>Neurocomputing >A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data
【24h】

A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data

机译:前馈神经网络的伪逆学习算法,在软件可靠性增长数据上具有堆叠通用性

获取原文
获取原文并翻译 | 示例

摘要

A supervised learning algorithm, Pseudoinverse Learning Algorithm (PIL), for feedforward neural networks is developed. The algorithm is based on generalized linear algebraic methods, and it adopts matrix inner products and pseudoinverse operations. Incorporating with network architecture of which the number of hidden layer neuron is equal to the number of examples to be learned, the algorithm eliminates learning errors by adding hidden layers and will give an exact solution (perfect learning). Unlike the existing gradient descent algorithm, the PIL is a feedforward only, fully automated algorithm, including no critical user-dependent parameters such as learning rate or momentum constant. The algorithm is tested on case studies with stacked generalization applications to software reliability growth data. The results indicate that the proposed algorithm is very efficient for the investigation on the computation-intensive generalization techniques.
机译:开发了一种前馈神经网络的监督学习算法,伪逆学习算法(PIL)。该算法基于广义线性代数方法,采用矩阵内积和伪逆运算。结合隐藏层神经元数量等于要学习的示例数量的网络体系结构,该算法通过添加隐藏层来消除学习错误,并将提供精确的解决方案(完美学习)。与现有的梯度下降算法不同,PIL是仅前馈的全自动算法,不包含关键的依赖于用户的参数,例如学习速率或动量常数。该算法在案例研究中进行了测试,并带有针对软件可靠性增长数据的堆叠通用应用程序。结果表明,该算法对于计算量大的泛化技术的研究非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号