首页> 外文期刊>Neural processing letters >Lung Cancer Prediction Using Stochastic Diffusion Search (SDS) Based Feature Selection and Machine Learning Methods
【24h】

Lung Cancer Prediction Using Stochastic Diffusion Search (SDS) Based Feature Selection and Machine Learning Methods

机译:基于随机扩散搜索的肺癌预测(SDS)的特征选择和机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

The symptoms of cancer normally appear only in the advanced stages, so it is very hard to detect resulting in a high mortality rate among the other types of cancers. Thus, there is a need for early prediction of lung cancer for the purpose of diagnosing and this can result in better chances of it being able to be treated successfully. Histopathology images of lung scan can be used for classification of lung cancer using image processing methods. The features from lung images are extracted and employed in the system for prediction. Grey level co-occurrence matrix along with the methods of Gabor filter feature extraction are employed in this investigation. Another important step in enhancing the classification is feature selection that tends to provide significant features that helps differentiating between various classes in an accurate and efficient manner. Thus, optimal feature subsets can significantly improve the performance of the classifiers. In this work, a novel algorithm of feature selection that is wrapper-based is proposed by employing the modified stochastic diffusion search (SDS) algorithm. The SDS, will benefit from the direct communication of agents in order to identify optimal feature subsets. The neural network, Naive Bayes and the decision tree have been used for classification. The results of the experiment prove that the proposed method is capable of achieving better levels of performance compared to existing methods like minimum redundancy maximum relevance, and correlation-based feature selection.
机译:癌症的症状通常仅出现在高级阶段,因此很难检测到其他类型的癌症中的死亡率高。因此,为了诊断目的,需要早期预测肺癌,这可能导致能够成功治疗的更好机会。使用图像处理方法用于肺扫描的组织病理学图像可用于肺癌的分类。肺图像的特征被提取并采用系统以进行预测。灰度水平共发生矩阵以及葛兰滤器特征提取方法的方法在本研究中采用。增强分类的另一个重要步骤是特征选择,其倾向于提供有效的特征,其有助于以准确且有效的方式在各种类之间区分。因此,最佳特征子集可以显着提高分类器的性能。在这项工作中,通过采用修改的随机扩散搜索(SDS)算法,提出了一种基于包装器的特征选择的新颖算法。 SDS将从代理的直接通信中受益,以便识别最佳特征子集。神经网络,天真贝叶斯和决策树已被用于分类。实验结果证明,与最小冗余最大相关性和基于相关的特征选择相比,该方法能够实现更好的性能水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号