首页> 外文期刊>Neural processing letters >Semi-supervised Weighted Ternary Decision Structure for Multi-category Classification
【24h】

Semi-supervised Weighted Ternary Decision Structure for Multi-category Classification

机译:多类别分类的半监控加权三元决策结构

获取原文
获取原文并翻译 | 示例

摘要

Semi-supervised learning has attracted researchers due to its advantages over supervised learning. In this paper, an extremely fast multi-category classification algorithm, termed as weighted ternary decision structure (WTDS) is proposed. WTDS is a generic algorithm that can extend any binary classifier into multi-category framework. This work also proposes a novel semi-supervised binary classifier termed as Weighted Laplacian least-squares twin support vector machine which is further extended using WTDS. The novel semi-supervised classifier obtains the solution by formulating a pair of Unconstrained Minimization Problems which are solved as systems of linear equation. WTDS takes advantage of the strengths of the classifier and efficiently constructs the multi-category classifier model in the form of a decision structure. WTDS outperforms other state-of-the-art multi-category approaches in terms of classification accuracy and time complexity. To confirm the feasibility and efficacy of proposed algorithm, experiments are conducted on benchmark UCI datasets.
机译:由于其优于监督学习的优势,半监督学习吸引了研究人员。本文提出了一种作为加权三元决策结构(WTD)称为加权三元决策结构(WTD)的极快的多类别分类算法。 WTD是一种通用算法,可以将任何二进制分类器扩展到多类别框架中。这项工作还提出了一种新的半监督二进制分类器,称为加权拉普拉斯最小二乘双支持向量机,其使用WTD进一步扩展。新颖的半监控分类器通过制定一对无约束最小化问题来获得解决方案,该问题被解除为线性方程的系统。 WTD利用了分类器的优点,并以决策结构的形式有效地构造多类分类器模型。在分类准确性和时间复杂性方面,WTDS优于其他最先进的多类别方法。为了确认所提出的算法的可行性和功效,在基准UCI数据集上进行实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号