首页> 外文期刊>Neurocomputing >Color image classification and retrieval through ternary decision structure based multi-category TWSVM
【24h】

Color image classification and retrieval through ternary decision structure based multi-category TWSVM

机译:基于三类决策系统的多类别TWSVM彩色图像分类与检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose Ternary Decision Structure based multi-category twin support vector machines (TDS-TWSVM) classifier. Twin support vector machines (TWSVM) formulation deals with finding non-parallel plane classifier which is obtained by solving two related Quadratic Programming Problems (QPPs). The proposed TDS-TWSVM classifier is an extension of TWSVM so as to handle multi-class data and is more efficient in terms of training and testing time of classifiers. For a K-class problem, a balanced ternary structure requires [log(3)K] comparisons for evaluating a test sample. The experimental results depict that TDS-TWSVM outperforms One-Against-All TWSVM (OAA-TWSVM) and binary tree-based TWSVM (TB-TWSVM) in terms of classification accuracy. We have shown the efficacy of the proposed algorithm via image classification and further for image retrieval. Experiments are performed on a varied range of benchmark image databases with 5-fold cross validation. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了基于三元决策结构的多类别双支持向量机(TDS-TWSVM)分类器。双支持向量机(TWSVM)公式用于处理非平行平面分类器,该分类器是通过解决两个相关的二次规划问题(QPPs)获得的。提出的TDS-TWSVM分类器是TWSVM的扩展,可以处理多类数据,并且在分类器的训练和测试时间方面更为有效。对于K类问题,平衡的三元结构需要[log(3)K]比较以评估测试样本。实验结果表明,在分类准确度方面,TDS-TWSVM优于一次性全TWSVM(OAA-TWSVM)和基于二叉树的TWSVM(TB-TWSVM)。我们已经通过图像分类和进一步的图像检索显示了该算法的有效性。实验是在具有5倍交叉验证的各种基准图像数据库上进行的。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号