首页> 外文期刊>Neural processing letters >Flight Delay Prediction Using Deep Convolutional Neural Network Based on Fusion of Meteorological Data
【24h】

Flight Delay Prediction Using Deep Convolutional Neural Network Based on Fusion of Meteorological Data

机译:基于气象数据融合的基于融合神经网络的飞行延迟预测

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, the civil aviation industry has a high precision demand of flight delay prediction. To make full use of the characteristics of flight data and meteorological data, two flight delay prediction models using deep convolution neural network based on fusion of meteorological data are proposed in this paper. One is DCNN (Dual-channel Convolutional Neural Network), which refers to the ResNet network structure. The other is SE-DenseNet (Squeeze and Excitation-Densely Connected Convolutional Network), combining the advantages of DenseNet and SENet. Firstly, flight data and meteorological data are fused in the model. Then, both DCNN and SE-DenseNet models are used to extract feature automatically based on the fused flight data set. Finally, the softmax classifier is adopted to predict the flight delay level. For proposed DCNN model, both straight channel and convolution channel are designed to guarantee the lossless transmission of the feature matrix and enhance the patency of the deep network. For proposed SE-DenseNet model, a SE module is added after the convolution layer of each DenseNet block, which can not only enhance the transmission of deep information but also achieve feature recalibration in the feature extraction process. The research results indicate that after considering characteristics of meteorological information, the accuracy of the model can be improved 1 % compared with only considering the flight information. The two deep convolutional neural networks proposed in this paper, DCNN and SE-DenseNet, can both effectively improve the prediction accuracies, reaching to 92.1 % and 93.19%, respectively.
机译:如今,民航业对飞行延误预测具有高的精度需求。为了充分利用飞行数据和气象数据的特点,本文提出了一种基于气象数据融合的深卷积神经网络的两个飞行延迟预测模型。一个是DCNN(双通道卷积神经网络),这是指Reset网络结构。另一个是SE-DENENET(挤压和激发密集连接的卷积网络),结合了DENSENET和SENET的优点。首先,飞行数据和气象数据在模型中融合。然后,DCNN和SE-DENENET模型都用于基于熔断飞行数据集自动提取功能。最后,采用Softmax分类器来预测飞行延迟水平。对于所提出的DCNN模型,直通通道和卷积通道均旨在保证特征矩阵的无损传输,并增强深网络的通畅。对于所提出的SE-DENENET模型,在每个DENSENET块的卷积层之后添加SE模块,这不仅可以增强深度信息的传输,而且可以在特征提取过程中实现特征重新校准。研究结果表明,在考虑气象信息的特征后,与考虑到航班信息,模型的准确性可以提高1%。本文提出的两个深卷积神经网络,DCNN和SE-DENENET,可以有效地提高预测准确性,分别达到92.1%和93.19%。

著录项

  • 来源
    《Neural processing letters》 |2020年第2期|1461-1484|共24页
  • 作者单位

    Tianjin Key Laboratory of Advanced Signal Processing Civil Aviation University of China Tianjin 300300 China;

    Tianjin Key Laboratory of Advanced Signal Processing Civil Aviation University of China Tianjin 300300 China;

    Tianjin Key Laboratory of Advanced Signal Processing Civil Aviation University of China Tianjin 300300 China;

    Qingdao Air Traffic Management Station of Civil Aviation of China East China Air Traffic Control Bureau Qingdao 266000 China;

    Tianjin Key Laboratory of Advanced Signal Processing Civil Aviation University of China Tianjin 300300 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flight delay prediction; DCNN; SE-DenseNet; Data fusion;

    机译:飞行延迟预测;DCNN;se-densenet;数据融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号