首页> 外文期刊>Neural processing letters >Global Exponential Stability of High-Order Bidirectional Associative Memory (BAM) Neural Networks with Proportional Delays
【24h】

Global Exponential Stability of High-Order Bidirectional Associative Memory (BAM) Neural Networks with Proportional Delays

机译:具有比例延迟的高阶双向关联内存(BAM)神经网络的全局指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the global exponential stability (GES) of high-order bidirectional associative memory (BAM) neural networks with proportional delays. Here, proportional delays are unbounded time-varying delays, which are different from constant delays, bounded time-varying delays and distributed delays. Through variable transformations, the original system can be transformed equivalently into high-order BAM neural networks with multi-constant delays and time-varying coefficients. By utilizing Brouwer's fixed point theorem and constructing appropriate delay differential inequalities, new sufficient criteria are established to guarantee the existence, uniqueness and GES of the equilibrium point for the considered model. Finally, two examples with numerical simulations are presented to demonstrate the effectiveness of the proposed results.
机译:本文考虑了具有比例延迟的高阶双向关联存储器(BAM)神经网络的全球指数稳定性(GES)。这里,比例延迟是无束缚的时变延迟,其与恒定延迟不同,界限时变延迟和分布式延迟不同。通过可变变换,原始系统可以等效地转换为具有多常数延迟和时变系数的高阶BAM神经网络。通过利用Brouwer的定期定理和构建适当的延迟差分不等式,建立了新的充足标准,以保证所考虑的模型的平衡点的存在,唯一性和GES。最后,提出了两个具有数值模拟的示例以证明所提出的结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号