首页> 外文期刊>Neural processing letters >Compressive Sensing of Multichannel EEG Signals Based on Graph Fourier Transform and Cosparsity
【24h】

Compressive Sensing of Multichannel EEG Signals Based on Graph Fourier Transform and Cosparsity

机译:基于曲线图傅立叶变换和COSPARSITY的多通道EEG信号的压缩检测

获取原文
获取原文并翻译 | 示例

摘要

Cosparsity as a useful prior has been extensively applied in accurate compressive sensing (CS) recovery of multichannel electroencephalogram (EEG) signals from only a few measurements. Latest studies proved that exploiting cosparsity and channel correlation in a unified framework can obtain accurate recovery results. However, all these methods ignore the adjacent relationship between the real physical electrodes and exploit the inaccurate channel correlation. Another problem is that most methods employ convex regularizations to exploit cosparsity and channel correlation, which cannot obtain competitive results. In this paper, a novel graph Fourier transform and nonconvex optimization (GFTN)-based method is proposed to enforce inherent correlation across different channels and cosparsity. Alternative direction method of multipliers is used to solve the resulting nonconvex optimization problem. Experiments show that GFTN can remarkably improve the performance of CS recovery for multichannel EEG signals.
机译:作为一种有用的COSPARSITY已经广泛地应用于仅几种测量的多通道脑电图(EEG)信号的准确压缩感测(CS)恢复。最新的研究证明,在统一框架中利用COSPARSITY和渠道相关性可以获得准确的恢复结果。然而,所有这些方法都忽略了真实物理电极之间的相邻关系并利用了不准确的信道相关性。另一个问题是大多数方法采用凸正常化来利用COSPARSITY和信道相关性,这不能获得竞争结果。在本文中,提出了一种新颖的傅立叶变换和非渗透优化(GFTN)的方法,以强制不同通道和Cosparsity的固有相关性。乘法器的替代方向方法用于解决产生的非凸化优化问题。实验表明,GFTN可以显着提高多通道EEG信号的CS恢复性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号