首页> 外文期刊>Neural processing letters >Bayesian Inference via Variational Approximation for Collaborative Filtering
【24h】

Bayesian Inference via Variational Approximation for Collaborative Filtering

机译:基于变分近似的贝叶斯推理用于协同过滤

获取原文
获取原文并翻译 | 示例

摘要

Variational approximation method finds wide applicability in approximating difficult-to-compute probability distributions, a problem that is especially important in Bayesian inference to estimate posterior distributions. Latent factor model is a classical model-based collaborative filtering approach that explains the user-item association by characterizing both items and users on latent factors inferred from rating patterns. Due to the sparsity of the rating matrix, the latent factor model usually encounters the overfitting problem in practice. In order to avoid overfitting, it is necessary to use additional techniques such as regularizing the model parameters or adding Bayesian priors on parameters. In this paper, two generative processes of ratings are formulated by probabilistic graphical models with corresponding latent factors, respectively. The full Bayesian frameworks of such graphical models are proposed as well as the variational inference approaches for the parameter estimation. The experimental results show the superior performance of the proposed Bayesian approaches compared with the classical regularized matrix factorization methods.
机译:变分近似法在近似难以计算的概率分布中具有广泛的适用性,这一问题在贝叶斯推断中估计后验分布时尤其重要。潜在因素模型是一种基于经典模型的协作过滤方法,通过根据评分模式推断出潜在因素来表征项目和用户,从而解释了用户与项目的关联。由于评分矩阵的稀疏性,潜在因子模型通常在实践中遇到过拟合问题。为了避免过度拟合,有必要使用其他技术,例如对模型参数进行正则化或在参数上添加贝叶斯先验。在本文中,通过概率图形模型分别建立了具有相应潜在因子的两个评级过程。提出了此类图形模型的完整贝叶斯框架以及用于参数估计的变分推理方法。实验结果表明,与经典的正则化矩阵分解方法相比,所提出的贝叶斯方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号