首页> 外文期刊>Neural processing letters >Bayesian Inference via Variational Approximation for Collaborative Filtering
【24h】

Bayesian Inference via Variational Approximation for Collaborative Filtering

机译:通过变分近似进行协同过滤的贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

Variational approximation method finds wide applicability in approximating difficult-to-compute probability distributions, a problem that is especially important in Bayesian inference to estimate posterior distributions. Latent factor model is a classical model-based collaborative filtering approach that explains the user-item association by characterizing both items and users on latent factors inferred from rating patterns. Due to the sparsity of the rating matrix, the latent factor model usually encounters the overfitting problem in practice. In order to avoid overfitting, it is necessary to use additional techniques such as regularizing the model parameters or adding Bayesian priors on parameters. In this paper, two generative processes of ratings are formulated by probabilistic graphical models with corresponding latent factors, respectively. The full Bayesian frameworks of such graphical models are proposed as well as the variational inference approaches for the parameter estimation. The experimental results show the superior performance of the proposed Bayesian approaches compared with the classical regularized matrix factorization methods.
机译:变分近似方法在近似计算概率分布近似时,在近似计算概率的情况下发现了广泛的适用性,这是贝叶斯推理对估计后部分布的问题。潜在因子模型是一种基于经典的模型的协作滤波方法,其通过在从评级模式推断的潜在因子上表征项目和用户来解释用户项关联。由于评级矩阵的稀疏性,潜在因子模型通常在实践中遇到过度的问题。为了避免过度拟合,有必要使用额外的技术,例如规则大写模型参数或在参数上添加贝叶斯女前沿。在本文中,分别由具有相应潜在因子的概率图形模型制定了两种进一步的评级过程。提出了这种图形模型的完整贝叶斯框架以及参数估计的变分推理方法。实验结果表明,与经典的正则化矩阵分解方法相比,普通贝叶斯方法的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号