首页> 外文期刊>Neural processing letters >Classification of Gait Patterns Using Kinematic and Kinetic Features, Gait Dynamics and Neural Networks in Patients with Unilateral Anterior Cruciate Ligament Deficiency
【24h】

Classification of Gait Patterns Using Kinematic and Kinetic Features, Gait Dynamics and Neural Networks in Patients with Unilateral Anterior Cruciate Ligament Deficiency

机译:单侧前交叉韧带缺乏症患者运动学,动力学特征,步态动力学和神经网络的步态分类

获取原文
获取原文并翻译 | 示例

摘要

The anterior cruciate ligament (ACL) plays an important role in controlling knee joint stability. The literature provides conflicting information on whether patients with ACL deficiency exhibits gait adaptations. The aim of this study is to investigate if the use of neural networks with a new pattern recognition-based method can differentiate gait patterns between ACL deficient (ACL-D) knee and contralateral ACL-intact (ACL-I) knee in patients with unilateral ACL deficiency. The proposed method is divided into two stages. In the training stage, kinematic and kinetic gait variables are measured and compared between the two lower extremities. Gait dynamics underlying gait patterns of ACL-D and ACL-I knees are locally accurately modeled and approximated by radial basis function (RBF) neural networks via deterministic learning theory. The derived knowledge of approximated gait dynamics is preserved in constant RBF networks. In the classification stage, a bank of dynamical estimators is constructed using the preserved constant RBF networks to represent the learned training gait patterns. By comparing the set of estimators with a test gait pattern, the generated average L1 norms of errors are taken as the difference and classificationmeasure between the training and test gait patterns. Finally, experiments are carried out on forty-three patients to assess the effectiveness of the proposed method. By using the leave-one-out cross-validation style under normal and fast walking speed conditions, the correct classification rates for discriminating between ACL-D and ACL-I knees are reported to be 95.9% and 94.0%, respectively. Compared with other state-of-the-art methods, the results demonstrate that gait alterations in the presence of chronic ACL deficiency can be detected with superior performance and support the validity of the proposed method.
机译:前交叉韧带(ACL)在控制膝关节稳定性中起重要作用。有关ACL缺乏患者是否表现出步态适应的文献提供了矛盾的信息。这项研究的目的是调查神经网络与基于新模式识别的方法的使用是否可以区分单侧患者的ACL缺陷(ACL-D)膝盖和对侧ACL完整(ACL-I)膝盖的步态模式ACL缺乏症。所提出的方法分为两个阶段。在训练阶段,测量并比较两个下肢的运动步态和动力学步态变量。通过确定性学习理论,通过径向基函数(RBF)神经网络对ACL-D和ACL-I膝盖的步态模式下的步态动力学进行局部精确建模和近似。在恒定的RBF网络中保留了近似步态动力学的派生知识。在分类阶段,使用保留的恒定RBF网络构造一组动态估算器,以表示学习的训练步态模式。通过将一组估计量与一个测试步态模式进行比较,将生成的平均L1误差范数作为训练和测试步态模式之间的差异和分类度量。最后,对43位患者进行了实验,以评估该方法的有效性。通过在正常和快速步行速度条件下使用留一法交叉验证样式,区分ACL-D和ACL-1膝盖的正确分类率据报告分别为95.9%和94.0%。与其他最新方法相比,研究结果表明,在存在慢性ACL缺乏症的情况下,步态改变可以以优异的性能被检测到,并支持该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号