首页> 外文期刊>Neural processing letters >A Learning-Based Multimodel Integrated Framework for Dynamic Traffic Flow Forecasting
【24h】

A Learning-Based Multimodel Integrated Framework for Dynamic Traffic Flow Forecasting

机译:基于学习的动态交通流量预测多模型集成框架

获取原文
获取原文并翻译 | 示例

摘要

Accurate and timely traffic flow forecasting is essential for many intelligent transportation systems. However, it is quite challenging to develop an efficient and robust forecasting model due to the inherent randomness and large variations of traffic flow. Over the past two decades, a variety of traffic flow forecasting models have been proposed. While each model has its merits and can achieve satisfactory forecasting results under certain traffic conditions, it is difficult for a single model to deal with various conditions well. In this paper, we proposed a novel deep learning-based multimodel integration framework in order to overcome the limitations of previous methods in dealing with large variations and uncertainties of traffic flow and hence improve the forecasting accuracy. Our framework can dynamically choose an optimal model or an optimal subset of models from a set of candidate models to forecast the future traffic flow conditions according to current input data. We employ stacked autoencoder (SAE), a simple yet efficient deep learning architecture, to extract the implicit relationships hidden in the traffic flow data and employed labeled data to fine tune the parameters of the architecture. Compared with the hand-crafted features and explicable dependence relations leveraged in previous models, the features learning from SAE are more representative and hence have more powerful forecasting capability. In addition, we propose a model-driven scheme to automatically label the training data and develop three strategies to integrate multiple models. Extensive experiments performed on three typical traffic flow datasets demonstrate the proposed framework outperforms state-of-the-art models and achieves much more accurate forecasting results under large and sudden variations.
机译:准确,及时的交通流量预测对于许多智能交通系统至关重要。但是,由于固有的随机性和交通流的巨大变化,开发高效而强大的预测模型非常具有挑战性。在过去的二十年中,已经提出了各种交通流量预测模型。虽然每种模型都有其优点,并且可以在某些交通状况下获得令人满意的预测结果,但是单个模型很难很好地处理各种状况。在本文中,我们提出了一种新颖的基于深度学习的多模型集成框架,以克服现有方法在处理交通流量的大变化和不确定性方面的局限性,从而提高预测的准确性。我们的框架可以从一组候选模型中动态选择最佳模型或最佳模型子集,以根据当前输入数据预测未来的交通流量状况。我们采用堆叠式自动编码器(SAE)(一种简单而有效的深度学习架构)来提取隐藏在交通流数据中的隐式关系,并使用标记数据来微调架构的参数。与以前模型中利用的手工特征和可解释的依赖关系相比,从SAE学习的特征更具代表性,因此具有更强大的预测能力。此外,我们提出了一种模型驱动的方案来自动标记训练数据,并开发出三种策略来集成多个模型。在三个典型的交通流数据集上进行的广泛实验表明,所提出的框架优于最新模型,并在较大和突然变化的情况下获得了更为准确的预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号