首页> 外文期刊>Neural, Parallel & Scientific Computations >Two-Stage Support Vector Machines for Protein Secondary Structure Prediction
【24h】

Two-Stage Support Vector Machines for Protein Secondary Structure Prediction

机译:用于蛋白质二级结构预测的两阶段支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Neural network approaches using Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs) for protein secondary structure prediction are presented. A two-stage SVM approach is proposed to capture the contextual relationship of secondary structure elements. The proposed technique yielded higher accuracy than the PHD (Profile network from HeiDelberg) method that cascades two MLPs. We also demonstrate that it is feasible to improve current single-stage approaches to protein secondary structure prediction by adding a second-stage prediction scheme to capture the contextual information among secondary structural elements and thereby improving the accuracy of prediction. Two-stage SVM approach achieved prediction accuracies of 72.4% and 76.7% on two databases of 126 and 513 nonhomologous globular proteins, respectively.
机译:提出了使用多层感知器(MLP)和支持向量机(SVM)进行蛋白质二级结构预测的神经网络方法。提出了一种两阶段支持向量机方法来捕获二级结构元素的上下文关系。所提出的技术比级联两个MLP的PHD(来自HeiDelberg的Profile网络)方法具有更高的准确性。我们还表明,通过添加第二阶段预测方案以捕获二级结构元素之间的上下文信息,从而改善当前的二级阶段蛋白质二级结构预测方法是可行的。在包含126个和513个非同源球蛋白的两个数据库中,两阶段SVM方法分别实现了72.4%和76.7%的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号