首页> 外文期刊>Neural, Parallel & Scientific Computations >DISTANCE BASED METHODS IN PHYLOGENETIC TREE CONSTRUCTION
【24h】

DISTANCE BASED METHODS IN PHYLOGENETIC TREE CONSTRUCTION

机译:系统树中基于距离的方法

获取原文
获取原文并翻译 | 示例

摘要

One of the most fundamental aspects of bioinformatics in understanding sequence evolution and relationships is molecular phylogenetics, in which the evolutionary histories of living organisms are represented by finite directed (weighted) graphs, in particular, directed (weighted) trees. There are basically two types of phylogenetic methods, distance based methods and character based methods. Distance based methods include two clutering based algorithms, UPGMA, NJ, and two optimality based algorithms, Fitch-Margoliash and minimum evolution [7]. This paper focuses on distance based methods. The paper starts with some preliminary knowledge and definitions in the area, including finite directed graphs, directed trees and matrices. It discusses the verification of the metric property of distance matrices, including detections of errors if a distance matrix fails to satisfy the metric property, and then provides an algorithm in modifying the distance matrix to satisfy the metric property. The second part of the paper is a brief survey based on the excerpts from the references, on various frequently used distance based phylogenetic tree construction methods, both cluster-based and optimality base methods, including UPGMA, Neighbor Joining, Fitch-Margoliash, and Minimum Evolution methods. Also, it discusses the assessment of the phylogenetic trees and some analysis of the algorithms.
机译:分子系统发育学是理解序列进化及其关系的最重要的方面之一,是分子系统进化论,其中生命有机体的进化历史由有限的有向(加权)图表示,特别是有向(加权)树表示。系统发育方法基本上有两种,基于距离的方法和基于特征的方法。基于距离的方法包括两个基于聚类的算法UPGMA,NJ和两个基于最优性的算法Fitch-Margoliash和最小演化[7]。本文重点介绍基于距离的方法。本文从该领域的一些初步知识和定义开始,包括有限的有向图,有向树和矩阵。它讨论了距离矩阵的度量属性的验证,包括在距离矩阵不满足度量属性的情况下检测错误,然后提供了一种修改距离矩阵以满足度量属性的算法。本文的第二部分是基于参考文献摘录的简短调查,考察了各种常用的基于距离的系统进化树构建方法,包括基于聚类的方法和基于最佳性的方法,包括UPGMA,Neighbor Joining,Fitch-Margoliash和Minimum进化方法。此外,它还讨论了系统发育树的评估以及算法的一些分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号