首页> 外文期刊>Neural, Parallel & Scientific Computations >An Asymptotic Hybrid Difference Scheme Forsingularly Perturbed Third And Fourth Order ordinary Differential Equations With discontinuous Source Term
【24h】

An Asymptotic Hybrid Difference Scheme Forsingularly Perturbed Third And Fourth Order ordinary Differential Equations With discontinuous Source Term

机译:具有不连续源项的三阶和四阶常微分方程奇摄动的渐近混合差分格式

获取原文
获取原文并翻译 | 示例

摘要

We consider Singularly perturbed Boundary-Value Problems (BVPs) for third and fourth order Ordinary Differential Equations (ODEs) with a discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions (BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equations does not have the small parameter but the second contains it. In this paper a computational method named as "An asymptotic hybrid finite difference scheme" for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a hybrid finite difference method. Numerical experiments support our theoretical results.
机译:我们考虑具有不连续源项和较小正参数乘以最高导数的三阶和四阶常微分方程(ODE)的奇摄动边值问题(BVP)。由于施加在这些方程式上的边界条件(BCs)的类型,这些问题可以转化为弱耦合系统。在此系统中,第一个方程式没有小参数,但是第二个方程式包含小参数。本文提出了一种求解这些系统的计算方法,称为“渐近混合有限差分方案”。在这种方法中,我们首先找到解的零阶渐近近似,然后通过在第二个方程式中用该近似替换解的第一分量来解耦系统。然后,通过混合有限差分法独立求解第二个方程。数值实验支持了我们的理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号