首页> 外文期刊>Neural, Parallel & Scientific Computations >ARITHMETIC AVERAGE GEOMETRIC MESH DISCRETIZATIONS FOR FOURTH AND SIXTH ORDER NONLINEAR TWO POINT BOUNDARY VALUE PROBLEMS
【24h】

ARITHMETIC AVERAGE GEOMETRIC MESH DISCRETIZATIONS FOR FOURTH AND SIXTH ORDER NONLINEAR TWO POINT BOUNDARY VALUE PROBLEMS

机译:四阶和六阶非线性两点边值问题的算术平均几何网格离散

获取原文
获取原文并翻译 | 示例

摘要

A third order accurate numerical method is developed for solving fourth and sixth order nonlinear ordinary differential equations with associated boundary conditions. Method is compact and uses one central and two off step geometric grids. Arithmetic average finite difference approximations have been applied for deriving new numerical scheme. The method can be easily extended to the high order (even) differential equations. The error analysis of the method has been analyzed briefly. The resulting difference equations leads to block tri-diagonal matrices and can be easily solved using block gauss-seidel algorithm. The numerical experiments with several singular and non-singular problems are conducted using proposed method. The computational results justify the reliability and efficiency of the method both in terms of order and accuracy.
机译:开发了一种三阶精确数值方法,用于求解具有关联边界条件的四阶和六阶非线性常微分方程。方法是紧凑的,并使用一个中央和两个不连续的几何网格。算术平均有限差分近似已被用于推导新的数值方案。该方法可以轻松地扩展到高阶(偶数)微分方程。对该方法的误差分析进行了简要分析。所得的差分方程导致块三对角矩阵,并且可以使用块高斯-赛德尔算法轻松求解。使用所提出的方法进行了具有几个奇异和非奇异问题的数值实验。计算结果从顺序和准确性两方面证明了该方法的可靠性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号