首页> 外文期刊>Neural, Parallel & Scientific Computations >NON-UNIFORM MESH ARITHMETIC AVERAGE DISCRETIZATION FOR PARABOLIC INITIAL BOUNDARY VALUE PROBLEMS
【24h】

NON-UNIFORM MESH ARITHMETIC AVERAGE DISCRETIZATION FOR PARABOLIC INITIAL BOUNDARY VALUE PROBLEMS

机译:抛物线型初始边值问题的非均匀网格算术平均离散

获取原文
获取原文并翻译 | 示例

摘要

In this article, we report a new implicit difference method of O(k~2h_l~(-1) + kh_l + h_l~3) on a variable mesh based on arithmetic average discretization for the solution of non-linear parabolic partial differential equation εu_(xx)= f(x,t,u,u_x,u_t), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where ε > 0 is a small real constant and k > 0, h_l > 0 are grid sizes in time- and space-directions, respectively. We also derive a new explicit variable mesh method of O(kh_l + h_l~3) for the estimates of (partial deriv u / partial deriv x). In both cases, we require only 3-spatial variable grid points. The proposed methods are directly applicable to problems in polar coordinates and we do not require any fictitious points to handle the singular point. The proposed method when applied to a linear parabolic equation is shown to be unconditionally stable. Numerical results are provided to demonstrate the utility of the proposed variable mesh methods derived.
机译:在本文中,我们报告了基于算术平均离散化的非线性抛物型偏微分方程εu_的可变网格上O(k〜2h_l〜(-1)+ kh_l + h_l〜3)的一种新的隐式差分方法(xx)= f(x,t,u,u_x,u_t),0 0遵循规定的适当初始和Dirichlet边界条件,其中ε> 0是一个小的实常数,k> 0, h_1> 0分别是时间和空间方向的网格大小。我们还推导了一种新的O(kh_1 + h_1〜3)的显式可变网格方法,用于估计(偏导数u /偏导数x)。在这两种情况下,我们仅需要3空间可变网格点。所提出的方法直接适用于极坐标中的问题,并且我们不需要任何虚拟点来处理奇异点。所提出的方法在应用于线性抛物线方程时被证明是无条件稳定的。提供数值结果以证明所提出的可变网格方法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号