首页> 外文期刊>IEEE Transactions on Neural Networks >A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
【24h】

A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

机译:神经网络和模糊聚类技术在分割大脑磁共振图像中的比较

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.
机译:将磁共振(MR)脑部断面图像进行分割,然后进行合成着色,以三种方式对原始数据进行可视化表示:文字和近似模糊c均值无监督聚类算法以及有监督的计算神经网络。最初的临床结果显示在正常志愿者和患有水肿包围的脑肿瘤的特定患者中。有监督和无监督的分割技术可提供大致相似的结果。与志愿者研究的原始图像数据相比,肉眼观察到无监督的模糊算法可显示出更好的分割效果。对于肿瘤/水肿或脑脊液边界的更复杂的分割问题,其中组织具有相似的MR松弛行为,观察到专家之间的评分不一致,与前馈级联相关性结果相比,fuzz-c-means方法略受青睐。比较了这两种方法的各个方面,例如有监督学习与无监督学习,时间复杂度以及诊断过程的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号