首页> 外文学位 >Medical Image Processing Techniques for the Objective Quantification of Pathology in Magnetic Resonance Images of the Brain.
【24h】

Medical Image Processing Techniques for the Objective Quantification of Pathology in Magnetic Resonance Images of the Brain.

机译:医学图像处理技术,用于对脑部磁共振图像中的病理学进行客观量化。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is focused on automatic detection of white matter lesions (WML) in Fluid Attenuation Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) of the brain. There is growing interest within the medical community regarding WML, since the total WML volume per patient (lesion load) was shown to be related to future stroke as well as carotid disease. Manual segmentation of WML is time consuming, labourious, observer-dependent and error prone. Automatic WML segmentation algorithms can be used instead since they give way to lesion load computation in a quantitative, efficient, reproducible and reliable manner.;FLAIR MRI are affected by at least two types of degradations, including additive noise and the partial volume averaging (PVA) artifact, which affect the accuracy of automated algorithms. Model-based methods that rely on Gaussian distributions have been extensively used to handle these two distortions, but are not applicable to FLAIR with WML. The distribution of noise in multicoil FLAIR MRI is non-Gaussian and the presence of WML modifies tissue distributions in a manner that is difficult to model.;To this end, the current thesis presents a novel way to model PVA artifacts in the presence of noise. The method is a generalized and adaptive approach, that was applied to a variety of MRI weightings (with and without pathology) for robust PVA quantification and tissue segmentation. No a priori assumptions are needed regarding class distributions and no training samples or initialization parameters are required.;Segmentation experiments were completed using simulated and real FLAIR MRI. Simulated images were generated with noise and PVA distortions using realistic brain and pathology models. Real images were obtained from Sunnybrook Health Sciences Centre and WML ground truth was generated through a manual segmentation experiment. The average DSC was found to be 0.99 and 0.83 for simulated and real images, respectively. A lesion load study was performed that examined interhemispheric WML volume for each patient.;To show the generalized nature of the approach, the proposed technique was also employed on pathology-free T1 and T2 MRI. Validation studies show the proposed framework is classifying PVA robustly and tissue classes are segmented with good results.
机译:本文的研究重点是自动检测脑液衰减反转恢复(FLAIR)磁共振图像(MRI)中的白质病变(WML)。医学界对WML的兴趣与日俱增,因为显示每位患者的WML总量(病变负荷)与未来的卒中以及颈动脉疾病有关。 WML的手动分段非常耗时,费力,依赖于观察者并且容易出错。可以使用自动WML分割算法代替,因为它们以定量,高效,可重现和可靠的方式让位于病变负荷计算; FLAIR MRI至少受两种类型的退化影响,包括加性噪声和部分体积平均(PVA) )工件,这会影响自动化算法的准确性。依赖高斯分布的基于模型的方法已被广泛用于处理这两种失真,但不适用于带有WML的FLAIR。多线圈FLAIR MRI中的噪声分布为非高斯分布,WML的存在以难以建模的方式修改了组织分布。为此,本论文提出了一种在存在噪声的情况下对PVA伪影进行建模的新颖方法。该方法是一种通用的自适应方法,已应用于各种MRI加权(有无病理),以实现可靠的PVA定量和组织分割。不需要关于类分布的先验假设,也不需要训练样本或初始化参数。;使用模拟和真实的FLAIR MRI完成了分割实验。使用真实的大脑和病理模型,模拟图像产生了噪声和PVA失真。真实图像是从Sunnybrook健康科学中心获得的,而WML地面真相是通过手动分割实验生成的。发现模拟图像和真实图像的平均DSC分别为0.99和0.83。进行了病灶负荷研究,检查了每位患者的半球间WML体积。为了显示该方法的一般性,该提议的技术还用于无病理性的T1和T2 MRI。验证研究表明,提出的框架可对PVA进行可靠的分类,并且对组织类别进行了细分,效果良好。

著录项

  • 作者

    Khademi, April Ellahe.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 278 p.
  • 总页数 278
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号