首页> 外文期刊>IEEE Transactions on Neural Networks >Rotation-invariant neural pattern recognition system with application to coin recognition
【24h】

Rotation-invariant neural pattern recognition system with application to coin recognition

机译:旋转不变神经模式识别系统及其在硬币识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.
机译:在模式识别中,通常需要处理问题以对转换后的模式进行分类。提出了一种对输入模式旋转程度不敏感的神经模式识别系统。该系统由带有许多平板的固定不变性网络和可训练的多层网络组成。该系统用于旋转不变硬币识别问题,以区分500日元硬币和500韩元硬币。结果表明,该方法适用于可变旋转模式识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号