首页> 外文期刊>IEEE Transactions on Neural Networks >Predicting the number of contacts and dimensions of full-custom integrated circuit blocks using neural network techniques
【24h】

Predicting the number of contacts and dimensions of full-custom integrated circuit blocks using neural network techniques

机译:使用神经网络技术预测全定制集成电路块的触点数量和尺寸

获取原文
获取原文并翻译 | 示例

摘要

Block layout dimension prediction is an important activity in many very large scale integration computer-aided design tasks, among them structural synthesis, floor planning and physical synthesis. Block layout dimension prediction is harder than block area prediction and has been previously considered to be intractable. The authors present a solution to this problem using a neural network machine learning approach. The method uses a neural network to predict first the number of contacts; then another neural network uses this prediction and other circuit features to predict the width and the height of its layout. The approach has produced much better results than those published-a dimension (aspect ratio) prediction average error of less than 18% with a corresponding area prediction average error of less than 15%. Furthermore, the technique predicts the number of contacts in a circuit with less than 4% error on average.
机译:块布局尺寸预测是许多大型集成计算机辅助设计任务中的重要活动,其中包括结构综合,平面规划和物理综合。块布局尺寸预测比块区域预测难,并且先前已被认为是难处理的。作者提出了使用神经网络机器学习方法解决此问题的方法。该方法使用神经网络首先预测联系人的数量,然后再预测联系人数量。然后另一个神经网络使用此预测和其他电路特征来预测其布局的宽度和高度。与已发布的方法相比,该方法产生了更好的结果-尺寸(长宽比)预测平均误差小于18%,相应的区域预测平均误差小于15%。此外,该技术可预测电路中的触点数量,平均误差小于4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号