首页> 外文期刊>IEEE Transactions on Neural Networks >Ranging through Gabor logons-a consistent, hierarchical approach
【24h】

Ranging through Gabor logons-a consistent, hierarchical approach

机译:遍历Gabor登录-一种一致的分层方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.
机译:在这项工作中,通过匹配两组密集特征向量来解决立体视觉中的对应问题。受生物学证据的启发,这些特征向量是由一组Gabor传感器与强度图像之间的相关性生成的。传感器由不同比例(空间频率)和方向的二维Gabor滤波器组成,这些滤波器与视觉皮层中简单V1细胞的接受场特征非常相似。然后使用分层的随机弛豫方法来获得密集的立体视差。与传统的立体声分层方法不同,基于特征的分层处理会产生一致的差异。为了避免由于静态遮挡而导致的错误匹配,使用了基于成像几何形状的双重匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号