首页> 外文期刊>IEEE Transactions on Neural Networks >Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements
【24h】

Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements

机译:多层感知器训练过程中的突触重量噪声:容错和训练改进

获取原文
获取原文并翻译 | 示例

摘要

The authors develop a mathematical model of the effects of synaptic arithmetic noise in multilayer perceptron training. Predictions are made regarding enhanced fault-tolerance and generalization ability and improved learning trajectory. These predictions are subsequently verified by simulation. The results are perfectly general and have profound implications for the accuracy requirements in multilayer perceptron (MLP) training, particularly in the analog domain.
机译:作者开发了多层感知器训练中突触算术噪声影响的数学模型。对增强的容错能力和泛化能力以及改进的学习轨迹进行了预测。这些预测随后通过仿真验证。结果是完全通用的,并且对多层感知器(MLP)训练的准确性要求具有深远的影响,尤其是在模拟领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号