首页> 外文期刊>IEEE Transactions on Neural Networks >Mean field annealing using compound Gauss-Markov random fields for edge detection and image estimation
【24h】

Mean field annealing using compound Gauss-Markov random fields for edge detection and image estimation

机译:使用复合高斯-马尔可夫随机场进行边缘检测和图像估计的平均场退火

获取原文
获取原文并翻译 | 示例

摘要

The authors consider the problem of edge detection and image estimation in nonstationary images corrupted by additive Gaussian noise. The noise-free image is represented using the compound Gauss-Markov random field developed by F.C. Jeng and J.W. Woods (1990), and the problem of image estimation and edge detection is posed as a maximum a posteriori estimation problem. Since the a posteriori probability function is nonconvex, computationally intensive stochastic relaxation algorithms are normally required. A deterministic relaxation method based on mean field annealing with a compound Gauss-Markov random (CGMRF) field model is proposed. The authors present a set of iterative equations for the mean values of the intensity and both horizontal and vertical line processes with or without taking into account some interaction between them. The relationship between this technique and two other methods is considered. Edge detection and image estimation results on several noisy images are included.
机译:作者考虑了由加性高斯噪声破坏的非平稳图像的边缘检测和图像估计问题。使用F.C.开发的复合高斯-马可夫随机场表示无噪声图像。 Jeng和J.W. Woods(1990)提出了图像估计和边缘检测问题,这是最大的后验估计问题。由于后验概率函数是非凸的,因此通常需要计算量大的随机松弛算法。提出了一种基于平均场退火的复合高斯-马尔可夫随机(CGMRF)场模型的确定性松弛方法。作者提出了强度和水平线和垂直线过程均值的一组迭代方程,无论是否考虑它们之间的某些相互作用。考虑了该技术与其他两种方法之间的关系。包括在多个噪点图像上的边缘检测和图像估计结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号