首页> 外文期刊>IEEE Transactions on Image Processing >Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle
【24h】

Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle

机译:使用复合高斯-马尔可夫随机场和MDL原理的无监督图像恢复和边缘定位

获取原文
获取原文并翻译 | 示例

摘要

Discontinuity-preserving Bayesian image restoration typically involves two Markov random fields: one representing the image intensities/gray levels to be recovered and another one signaling discontinuities/edges to be preserved. The usual strategy is to perform joint maximum a posterori (MAP) estimation of the image and its edges, which requires the specification of priors for both fields. Instead of taking an edge prior, we interpret discontinuities (in fact their locations) as deterministic unknown parameters of the compound Gauss-Markov random field (CGMRF), which is assumed to model the intensities. This strategy should allow inferring the discontinuity locations directly from the image with no further assumptions. However, an additional problem emerges: the number of parameters (edges) is unknown. To deal with it, we invoke the minimum description length (MDL) principle; according to MDL, the best edge configuration is the one that allows the shortest description of the image and its edges. Taking the other model parameters (noise and CGMRF variances) also as unknown, we propose a new unsupervised discontinuity-preserving image restoration criterion. Implementation is carried out by a continuation-type iterative algorithm which provides estimates of the number of discontinuities, their locations, the noise variance, the original image variance, and the original image itself (restored image). Experimental results with real and synthetic images are reported.
机译:保留不连续性的贝叶斯图像恢复通常涉及两个Markov随机字段:一个代表要恢复的图像强度/灰度级,另一个代表要保留的不连续性/边缘。通常的策略是对图像及其边缘执行联合最大后验(MAP)估计,这需要为两个字段指定先验。我们将不连续性(实际上是它们的位置)解释为复合高斯-马尔可夫随机场(CGMRF)的确定性未知参数,而不是先于边缘,它被假定为对强度进行建模。此策略应允许直接从图像推断不连续位置,而无需进一步假设。但是,出现了另一个问题:参数(边)的数量未知。为了解决这个问题,我们调用最小描述长度(MDL)原则。根据MDL,最好的边缘配置是允许对图像及其边缘进行最短描述的配置。以其他模型参数(噪声和CGMRF方差)也为未知数,我们提出了一种新的无监督不连续性图像保持准则。通过连续类型的迭代算法执行实现,该算法提供了不连续点的数量,其位置,噪声方差,原始图像方差和原始图像本身(还原的图像)的估计值。报告了真实和合成图像的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号