首页> 外文期刊>IEEE Transactions on Neural Networks >ART-EMAP: A neural network architecture for object recognition by evidence accumulation
【24h】

ART-EMAP: A neural network architecture for object recognition by evidence accumulation

机译:ART-EMAP:通过证据积累来识别对象的神经网络架构

获取原文
获取原文并翻译 | 示例

摘要

A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3D object recognition from a series of ambiguous 2D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory. Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data.
机译:引入了一种新的神经网络架构,用于在有监督和无监督学习之后识别模式类别。应用程序包括时空图像理解和预测以及来自一系列模糊2D视图的3D对象识别。称为ART-EMAP的体系结构实现了自适应共振理论(ART)和动态预测映射(EMAP)的时空证据集成。 ART-EMAP在四个增量阶段扩展了模糊ARTMAP的功能。阶段1在视图类别字段中引入了分布式模式表示。第2阶段将决策标准添加到视图和对象类别之间的映射中,从而在面临低置信度预测时延迟了模糊对象的识别。第三阶段通过证据在中期记忆中积累的领域来增强系统。阶段4在有限的有监督的网络培训初期之后,添加了无监督的学习过程来微调性能。每个ART-EMAP阶段都有一个基准仿真示例,其中使用了嘈杂数据和无噪声数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号