首页> 外文期刊>IEEE Transactions on Neural Networks >Robust radar target classifier using artificial neural networks
【24h】

Robust radar target classifier using artificial neural networks

机译:使用人工神经网络的鲁棒雷达目标分类器

获取原文
获取原文并翻译 | 示例

摘要

In this paper an artificial neural network (ANN) based radar target classifier is presented, and its performance is compared with that of a conventional minimum distance classifier. Radar returns from realistic aircraft are synthesized using a thin wire time domain electromagnetic code. The time varying backscattered electric field from each target is processed using both a conventional scheme and an ANN-based scheme for classification purposes. It is found that a multilayer feedforward ANN, trained using a backpropagation learning algorithm, provides a higher percentage of successful classification than the conventional scheme. The performance of the ANN is found to be particularly attractive in an environment of low signal-to-noise ratio. The performance of both methods are also compared when a preemphasis filter is used to enhance the contributions from the high frequency poles in the target response.
机译:本文提出了一种基于人工神经网络的雷达目标分类器,并将其性能与常规最小距离分类器进行了比较。使用细线时域电磁代码合成现实飞机的雷达回波。出于分类目的,使用常规方案和基于ANN的方案对来自每个目标的时变反向散射电场进行处理。发现使用反向传播学习算法训练的多层前馈ANN,与传统方案相比,提供了更高的成功分类百分比。人们发现,在低信噪比的环境中,人工神经网络的性能特别吸引人。当使用预加重滤波器增强目标响应中高频极点的贡献时,还会比较两种方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号