首页> 外文期刊>IEEE Transactions on Neural Networks >Structure of the high-order Boltzmann machine from independence maps
【24h】

Structure of the high-order Boltzmann machine from independence maps

机译:独立图的高阶玻尔兹曼机的结构

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider the determination of the structure of the high-order Boltzmann machine (HOBM), a stochastic recurrent network for approximating probability distributions. We obtain the structure of the HOBM, the hypergraph of connections, from conditional independences of the probability distribution to model. We assume that an expert provides these conditional independences and from them we build independence maps, Markov and Bayesian networks, which represent conditional independences through undirected graphs and directed acyclic graphs respectively. From these independence maps we construct the HOBM hypergraph. The central aim of this paper is to obtain a minimal hypergraph. Given that different orderings of the variables provide in general different Bayesian networks, we define their intersection hypergraph. We prove that the intersection hypergraph of all the Bayesian networks (N!) of the distribution is contained by the hypergraph of the Markov network, it is more simple, and we give a procedure to determine a subset of the Bayesian networks that verifies this property. We also prove that the Markov network graph establishes a minimum connectivity for the hypergraphs from Bayesian networks.
机译:在本文中,我们考虑确定高阶玻尔兹曼机(HOBM)的结构,该机是用于近似概率分布的随机递归网络。从概率分布的条件独立性到模型,我们获得了HOBM的结构,连接的超图。我们假设专家提供了这些条件独立性,并根据它们建立了独立图,马尔可夫网络和贝叶斯网络,它们分别通过无向图和有向无环图表示条件独立性。根据这些独立图,我们构造了HOBM超图。本文的主要目的是获得最小超图。鉴于在一般不同的贝叶斯网络中提供的变量的不同顺序,我们定义了它们的相交超图。我们证明了分布的所有贝叶斯网络(N!)的交点超图都包含在马尔可夫网络的超图中,它更简单,并且我们给出了确定贝叶斯网络的子集的过程,以验证该属性。我们还证明了马尔可夫网络图为贝叶斯网络的超图建立了最小连通性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号