首页> 外文期刊>IEEE Transactions on Neural Networks >Boltzmann Machines Reduction by High-Order Decimation
【24h】

Boltzmann Machines Reduction by High-Order Decimation

机译:通过高阶抽取减少玻尔兹曼机

获取原文
获取原文并翻译 | 示例

摘要

Decimation is a common technique in statistical physics that is used in the context of Boltzmann machines (BMs) to drastically reduce the computational cost at the learning stage. Decimation allows to analytically evaluate quantities that should otherwise be statistically estimated by means of Monte Carlo (MC) simulations. However, in its original formulation, this method could only be applied to restricted topologies corresponding to sparsely connected neural networks. In this brief, we present a generalization of the decimation process and prove that it can be used on any BM, regardless of its topology and connectivity. We solve the Monk problem with this algorithm and show that it performs as well as the best classification methods currently available.
机译:抽取是统计物理学中的一种常用技术,在玻尔兹曼机器(BM)的背景下使用,以大幅度降低学习阶段的计算成本。抽取允许分析评估应该通过蒙特卡洛(MC)模拟进行统计估计的数量。然而,在其原始表述中,该方法只能应用于与稀疏连接的神经网络相对应的受限拓扑。在本简介中,我们对抽取过程进行了概括,并证明了其可以在任何BM上使用,而无论其拓扑结构和连通性如何。我们使用此算法解决了Monk问题,并证明了它的性能以及目前可用的最佳分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号