首页> 外文期刊>IEEE Transactions on Neural Networks >Cork quality classification system using a unified image processing and fuzzy-neural network methodology
【24h】

Cork quality classification system using a unified image processing and fuzzy-neural network methodology

机译:使用统一图像处理和模糊神经网络方法的软木塞质量分类系统

获取原文
获取原文并翻译 | 示例

摘要

Cork is a natural material produced in the Mediterranean countries. Cork stoppers are used to seal wine bottles, Cork stopper quality classification is a practical pattern classification problem. The cork stoppers are grouped into eight classes according to the degree of defects on the cork surface. These defects appear in the form of random-shaped holes, cracks, and others. As a result, the classification cork stopper is not a simple object recognition problem. This is because the pattern features are not specifically defined to a particular shape or size. Thus, a complex classification form is involved, Furthermore, there is a need to build a standard quality control system in order to reduce the classification problems in the cork stopper industry. The solution requires factory automation meeting low time and reduced cost requirements. This paper describes a cork stopper quality classification system using morphological filtering and contour extraction and following (CEF) as the feature extraction method, and a fuzzy-neural network as a classifier. This approach will be used on a daily basis. A new adaptive image thresholding method using iterative and localized scheme is also proposed, A fully functioning prototype of the system has been built and successfully tested. The test results showed a 6.7% rejection ratio, It is compared with the 40% counterpart provided by traditional systems. The human experts in the cork stopper industry rated this proposed classification approach as excellent.
机译:软木塞是地中海国家/地区生产的天然材料。软木塞用于密封葡萄酒瓶,软木塞的质量分类是一个实际的模式分类问题。根据软木塞表面的缺陷程度,软木塞分为八类。这些缺陷以随机形状的孔,裂纹等形式出现。结果,分类软木塞不是简单的物体识别问题。这是因为没有将图案特征特定地定义为特定的形状或尺寸。因此,涉及复杂的分类形式。此外,需要建立标准的质量控制系统,以减少软木塞工业中的分类问题。该解决方案要求工厂自动化满足较少的时间并降低成本要求。本文描述了一种软木塞质量分类系统,该方法使用形态学过滤和轮廓提取和跟随(CEF)作为特征提取方法,并使用模糊神经网络作为分类器。该方法将每天使用。提出了一种新的基于迭代和局部化的自适应图像阈值化方法,构建了系统的功能完备的原型并成功进行了测试。测试结果显示拒绝率为6.7%,与传统系统提供的40%相比。软木塞行业的专家们将此提议的分类方法评为极佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号