首页> 外文期刊>IEEE Transactions on Neural Networks >Application of neural networks to software quality modeling of a very large telecommunications system
【24h】

Application of neural networks to software quality modeling of a very large telecommunications system

机译:神经网络在超大型电信系统软件质量建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.
机译:社会对电信的依赖程度使得电信软件必须具有高度的可靠性。北电和加拿大贝尔的一项联合项目是对潜在缺陷的早期风险评估进行增强测量(EMERALD),以提高电信软件产品的可靠性。本文报告了为EMERALD系统开发的神经网络建模技术的案例研究。最终的神经网络目前正处于北电网络的原型测试阶段。神经网络模型可用于识别易于出错的模块,以在开发的早期阶段引起更多关注,从而降低这些模块出现操作问题的风险。我们对一个模块的子集进行了建模,这些模块代表了非常大型的电信软件系统中的700万行代码。该集合包括那些可重复使用的模块,这些模块与先前版本相比有所更改。因变量是易错模块类别中的成员资格。自变量是软件设计属性的九种度量的主要组成部分。我们将神经网络模型与非参数判别模型进行了比较,发现神经网络模型具有更好的预测准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号