首页> 外文期刊>IEEE Transactions on Neural Networks >Improving the error backpropagation algorithm with a modified error function
【24h】

Improving the error backpropagation algorithm with a modified error function

机译:使用修正的误差函数改进误差反向传播算法

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a modified error function to improve the error backpropagation (EBP) algorithm of multilayer perceptrons (MLPs) which suffers from slow learning speed. To accelerate the learning speed of the EBP algorithm, the proposed method reduces the probability that output nodes are near the wrong extreme value of sigmoid activation function. This is acquired through a strong error signal for the incorrectly saturated output node and a weak error signal for the correctly saturated output node. The weak error signal for the correctly saturated output node, also, prevents overspecialization of learning for training patterns. The effectiveness of the proposed method is demonstrated in a handwritten digit recognition task.
机译:这封信提出了一种改进的误差函数,以改善学习速度较慢的多层感知器(MLP)的误差反向传播(EBP)算法。为了加快EBP算法的学习速度,该方法降低了输出节点接近S型激活函数的错误极值的可能性。这是通过针对错误饱和的输出节点的强错误信号和针对正确饱和的输出节点的弱错误信号获得的。正确饱和的输出节点的微弱误差信号还可以防止针对训练模式的学习过度专业化。手写数字识别任务证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号