首页> 外文期刊>IEEE Transactions on Neural Networks >Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks
【24h】

Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks

机译:使用复值多层前馈神经网络的非线性盲均衡方案

获取原文
获取原文并翻译 | 示例

摘要

Among the useful blind equalization algorithms, stochastic-gradient iterative equalization schemes are based on minimizing a nonconvex and nonlinear cost function. However, as they use a linear FIR filter with a convex decision region, their residual estimation error is high. In the paper, four nonlinear blind equalization schemes that employ a complex-valued multilayer perceptron instead of the linear filter are proposed and their learning algorithms are derived. After the important properties that a suitable complex-valued activation function must possess are discussed, a new complex-valued activation function is developed for the proposed schemes to deal with QAM signals of any constellation sizes. It has been further proven that by the nonlinear transformation of the proposed function, the correlation coefficient between the real and imaginary parts of input data decreases when they are jointly Gaussian random variables. Last, the effectiveness of the proposed schemes is verified in terms of initial convergence speed and MSE in the steady state. In particular, even without carrier phase tracking procedure, the proposed schemes correct an arbitrary phase rotation caused by channel distortion.
机译:在有用的盲均衡算法中,随机梯度迭代均衡方案基于最小化非凸和非线性成本函数。但是,由于它们使用具有凸决策区域的线性FIR滤波器,因此其残留估计误差很高。提出了四种采用复值多层感知器代替线性滤波器的非线性盲均衡方案,并推导了它们的学习算法。在讨论了合适的复数值激活函数必须具备的重要特性之后,针对提出的方案开发了一种新的复数值激活函数,以处理任何星座尺寸的QAM信号。进一步证明,通过所提出函数的非线性变换,当输入数据的实部和虚部共同为高斯随机变量时,它们的相关系数减小。最后,从初始收敛速度和稳态下的MSE方面验证了所提方案的有效性。特别是,即使没有载波相位跟踪程序,所提出的方案也可以校正由信道失真引起的任意相位旋转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号