首页> 外文期刊>IEEE Transactions on Signal Processing >Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization
【24h】

Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization

机译:具有自适应样条激活功能的复数值神经网络,用于数字无线电链路非线性均衡

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new complex-valued neural network based on adaptive activation functions is proposed. By varying the control points of a pair of Catmull-Rom cubic splines, which are used as an adaptable activation function, this new kind of neural network can be implemented as a very simple structure that is able to improve the generalization capabilities using few training samples. Due to its low architectural complexity (low overhead with respect to a simple FIR filter), this network can be used to cope with several nonlinear DSP problems at a high symbol rate. In particular, this work addresses the problem of nonlinear channel equalization. In fact, although several authors have already recognized the usefulness of a neural network as a channel equalizer, one problem has not yet been addressed: the high complexity and the very long data sequence needed to train the network. Several experimental results using a realistic channel model are reported that prove the effectiveness of the proposed network on equalizing a digital satellite radio link in the presence of noise, nonlinearities, and intersymbol interference (ISI).
机译:本文提出了一种新的基于自适应激活函数的复值神经网络。通过改变一对Catmull-Rom三次样条曲线的控制点(用作自适应激活函数),可以将这种新型神经网络实现为非常简单的结构,从而能够使用很少的训练样本来提高泛化能力。由于其较低的架构复杂度(相对于简单的FIR滤波器而言,开销较低),该网络可用于以高符号率处理多个非线性DSP问题。特别地,这项工作解决了非线性信道均衡的问题。实际上,尽管有几位作者已经认识到神经网络作为通道均衡器的有用性,但尚未解决一个问题:训练网络所需的高复杂度和非常长的数据序列。报告了使用实际信道模型的一些实验结果,证明了所提出的网络在存在噪声,非线性和符号间干扰(ISI)的情况下均衡数字卫星无线电链路的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号