首页> 外文期刊>IEEE Transactions on Neural Networks >The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks
【24h】

The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks

机译:真相将揭晓:提取受过训练的人工神经网络中嵌入的知识的方向和挑战

获取原文
获取原文并翻译 | 示例

摘要

To date, the preponderance of techniques for eliciting the knowledge embedded in trained artificial neural networks (ANN's) has focused primarily on extracting rule-based explanations from feedforward ANN's. The ADT taxonomy for categorizing such techniques was proposed in 1995 to provide a basis for the systematic comparison of the different approaches. This paper shows that not only is this taxonomy applicable to a cross section of current techniques for extracting rules from trained feedforward ANN's but also how the taxonomy can be adapted and extended to embrace a broader range of ANN types (e,g., recurrent neural networks) and explanation structures. In addition we identify some of the key research questions in extracting the knowledge embedded within ANN's including the need for the formulation of a consistent theoretical basis for what has been, until recently, a disparate collection of empirical results.
机译:迄今为止,用于获取已嵌入人工神经网络(ANN)中的知识的技术主要集中于从前馈ANN中提取基于规则的解释。 1995年提出了将ADT分类的技术,以为不同方法的系统比较提供基础。本文表明,该分类法不仅适用于从受训前馈ANN提取规则的当前技术的横截面,而且还适用于如何将该分类法进行扩展和扩展以涵盖更广泛的ANN类型(例如递归神经网络)网络)和说明结构。此外,我们确定了一些在提取ANN中嵌入的知识方面的关键研究问题,包括需要为直到最近才有不同的经验结果建立一致的理论基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号