首页> 外文期刊>IEEE Transactions on Neural Networks >ScaleNet-multiscale neural-network architecture for time series prediction
【24h】

ScaleNet-multiscale neural-network architecture for time series prediction

机译:ScaleNet-多尺度神经网络架构,用于时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

The effectiveness of a multiscale neural net architecture for time series prediction of nonlinear dynamic systems is investigated. The prediction task is simplified by decomposing different scales of past windows into different scales of wavelets, and predicting the coefficients of each scale of wavelets by means of a separate multilayer perceptron. The short-term history is decomposed into the lower scales of wavelet coefficients, which are utilized for detailed analysis and prediction, while the long-term history is decomposed into higher scales of wavelet coefficients that are used for the analysis and prediction of slow trends in the time series. These coordinated scales of time and frequency provide an interpretation of the series structures, and more information about the history of the series, using fewer coefficients than other methods. Results concerning scales of time and frequencies are combined by another expert perceptron, which learns the weight of each scale in the goal-prediction of the original time series. Each network is trained by backpropagation. The weights and biases are initialized by a clustering algorithm of the temporal patterns of the time series, which improves the prediction results as compared to random initialization. The suggested multiscale architecture outperforms the corresponding single-scale architectures. The employment of improved learning methods for each of the ScaleNet networks can further improve the prediction results.
机译:研究了多尺度神经网络体系结构对非线性动力系统时间序列预测的有效性。通过将过去窗口的不同比例分解为不同比例的小波,并通过单独的多层感知器预测每个比例的小波系数,简化了预测任务。短期历史分解为小波系数的小尺度,用于详细的分析和预测,而长期历史分解为小波系数的大尺度,用于小波系数的分析和预测。时间序列。这些时间和频率的协调标度提供了序列结构的解释,并且使用了比其他方法更少的系数来提供有关序列历史的更多信息。关于时间和频率尺度的结果由另一个专家感知器组合,该感知器在原始时间序列的目标预测中了解每种尺度的权重。每个网络都通过反向传播进行训练。权重和偏差通过时间序列的时间模式的聚类算法进行初始化,与随机初始化相比,可以提高预测结果。建议的多尺度体系结构优于相应的单尺度体系结构。对每个ScaleNet网络采用改进的学习方法可以进一步改善预测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号