首页> 外文期刊>IEEE Transactions on Neural Networks >Compensatory neurofuzzy systems with fast learning algorithms
【24h】

Compensatory neurofuzzy systems with fast learning algorithms

机译:具有快速学习算法的补偿性神经模糊系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new adaptive fuzzy reasoning method using compensatory fuzzy operators is proposed to make a fuzzy logic system more adaptive and more effective. Such a compensatory fuzzy logic system is proved to be a universal approximator. The compensatory neural fuzzy networks built by both control-oriented fuzzy neurons and decision-oriented fuzzy neurons cannot only adaptively adjust fuzzy membership functions but also dynamically optimize the adaptive fuzzy reasoning by using a compensatory learning algorithm. The simulation results of a cart-pole balancing system and nonlinear system modeling have shown that: 1) the compensatory neurofuzzy system can effectively learn commonly used fuzzy IF-THEN rules from either well-defined initial data or ill-defined data; 2) the convergence speed of the compensatory learning algorithm is faster than that of the conventional backpropagation algorithm; and 3) the efficiency of the compensatory learning algorithm can be improved by choosing an appropriate compensatory degree.
机译:本文提出了一种新的使用补偿模糊算子的自适应模糊推理方法,以使模糊逻辑系统更自适应,更有效。这种补偿性模糊逻辑系统被证明是通用逼近器。由面向控制的模糊神经元和面向决策的模糊神经元构建的补偿神经模糊网络不仅可以自适应地调整模糊隶属函数,而且可以通过使用补偿学习算法来动态地优化自适应模糊推理。车杆平衡系统和非线性系统建模的仿真结果表明:1)补偿性神经模糊系统可以从定义明确的初始数据或定义不明确的数据中有效学习常用的模糊IF-THEN规则; 2)补偿学习算法的收敛速度比传统的反向传播算法快; 3)通过选择合适的补偿度可以提高补偿学习算法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号