首页> 外文期刊>IEEE Transactions on Neural Networks >On the implementation of frontier-to-root tree automata in recursive neural networks
【24h】

On the implementation of frontier-to-root tree automata in recursive neural networks

机译:递归神经网络中从树到根的自动机的实现

获取原文
获取原文并翻译 | 示例

摘要

We explore the node complexity of recursive neural network implementations of frontier-to-root tree automata (FRA). Specifically, we show that an FRAO (Mealy version) with m states, l input-output labels, and maximum rank N can be implemented by a recursive neural network with O(/spl radic/(log l+log m)lm/sup N//log l+N log m) units and four computational layers, i.e., without counting the input layer. A lower bound is derived which is tight when no restrictions are placed on the number of layers. Moreover, we present a construction with three computational layers having node complexity of O((log l+log m)/spl radic/lm/sup N/) and O((log l+log m)lm/sup N/) connections. A construction with two computational layers is given that implements any given FRAO with a node complexity of O(lm/sup N/) and O((log l+log m)lm/sup N/) connections. As a corollary we also get a new upper bound for the implementation of finite-state automata into recurrent neural networks with three computational layers.
机译:我们探索边界到根树自动机(FRA)的递归神经网络实现的节点复杂性。具体来说,我们证明了可以通过具有O(/ spl radic /(log l + log m)lm / sup的递归神经网络来实现具有m个状态,l个输入-输出标签和最大秩N的FRAO(Mealy版本) N // log l + N log m)个单位和四个计算层,即不计算输入层。得出下限,当对层数没有限制时该下限很严格。此外,我们提出了具有三个计算层的构造,这些计算层的节点复杂度分别为O((log l + log m)/ spl radic / lm / sup N /)和O((log l + log m)lm / sup N /)连接。 。给出了具有两个计算层的构造,该构造实现了具有O(lm / sup N /)和O((log l + log m)lm / sup N /)连接的节点复杂度的任何给定FRAO。因此,我们还获得了将有限状态自动机实施到具有三个计算层的递归神经网络中的新上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号