首页> 外文期刊>IEEE Transactions on Neural Networks >On-line learning algorithms for locally recurrent neural networks
【24h】

On-line learning algorithms for locally recurrent neural networks

机译:局部递归神经网络的在线学习算法

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on online learning procedures for locally recurrent neural nets with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose online version, causal recursive backpropagation (CRBP), has some advantages over other online methods. CRBP includes as particular cases backpropagation (BP), temporal BP, Back-Tsoi algorithm (1991) among others, thereby providing a unifying view on gradient calculation for recurrent nets with local feedback. The only learning method known for locally recurrent nets with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and faster convergence with respect to the Back-Tsoi algorithm. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with CRBP. CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space.
机译:本文着重于本地递归神经网络的在线学习程序,重点是具有无限冲激响应(IIR)突触的多层感知器(MLP)及其变化,其中包括广义输出和激活反馈多层网络(MLN)。我们提出了一种新的基于梯度的过程,称为递归反向传播(RBP),其在线版本因果递归反向传播(CRBP)与其他在线方法相比具有一些优势。 CRBP在特定情况下包括反向传播(BP),时间BP,Back-Tsoi算法(1991),从而提供了具有局部反馈的递归网络梯度计算的统一视图。 Back和Tsoi是唯一一种不受体系结构限制的本地递归网络学习方法。相对于Back-Tsoi算法,该算法具有更好的稳定性和更快的收敛性。 CRBP的计算复杂度可与Back-Tsoi算法相媲美,例如,对于常规体系结构和参数设置,其计算因数小于1.5。但是,新算法的优越性能很容易证明计算量的这种小幅增加。此外,将截断的BPTT和RTRL的一般范例应用于具有本地反馈的网络,并与CRBP进行比较。 CRBP表现出相似的性能,对复杂性的详细分析表明,CRBP更容易实现,例如,CRBP在空间和时间上是本地的,而RTRL在空间上不是本地的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号