首页> 外文期刊>IEEE Transactions on Neural Networks >Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization
【24h】

Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization

机译:概率主成分子空间:用于数据可视化的分层有限混合模型

获取原文
获取原文并翻译 | 示例

摘要

Visual exploration has proven to be a powerful tool for multivariate data mining and knowledge discovery. Most visualization algorithms aim to find a projection from the data space down to a visually perceivable rendering space. To reveal all of the interesting aspects of multimodal data sets living in a high-dimensional space, a hierarchical visualization algorithm is introduced which allows the complete data set to be visualized at the top level, with clusters and subclusters of data points visualized at deeper levels. The methods involve hierarchical use of standard finite normal mixtures and probabilistic principal component projections, whose parameters are estimated using the expectation-maximization and principal component neural networks under the information theoretic criteria. We demonstrate the principle of the approach on several multimodal numerical data sets, and we then apply the method to the visual explanation in computer-aided diagnosis for breast cancer detection from digital mammograms.
机译:事实证明,视觉探索是进行多元数据挖掘和知识发现的强大工具。大多数可视化算法的目的是找到从数据空间到视觉上可感知的渲染空间的投影。为了揭示生活在高维空间中的多模式数据集的所有有趣方面,引入了层次化的可视化算法,该算法允许在顶层显示完整的数据集,而在更深的层次上显示数据点的群集和子集。这些方法涉及标准有限正态混合和概率主成分投影的分层使用,其概率根据信息理论标准使用期望最大化和主成分神经网络进行估计。我们在几个多模态数值数据集上演示了该方法的原理,然后将其应用于从数字化X线乳房造影术检测乳腺癌的计算机辅助诊断中的可视化解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号