首页> 外文期刊>IEEE Transactions on Neural Networks >Constructive neural-network learning algorithms for pattern classification
【24h】

Constructive neural-network learning algorithms for pattern classification

机译:用于模式分类的构造性神经网络学习算法

获取原文
获取原文并翻译 | 示例

摘要

Constructive learning algorithms offer an attractive approach for the incremental construction of near-minimal neural-network architectures for pattern classification. They help overcome the need for ad hoc and often inappropriate choices of network topology in algorithms that search for suitable weights in a priori fixed network architectures. Several such algorithms are proposed in the literature and shown to converge to zero classification errors (under certain assumptions) on tasks that involve learning a binary to binary mapping (i.e., classification problems involving binary-valued input attributes and two output categories). We present two constructive learning algorithms, MPyramid-real and MTiling-real, that extend the pyramid and tiling algorithms, respectively, for learning real to M-ary mappings (i.e., classification problems involving real-valued input attributes and multiple output classes). We prove the convergence of these algorithms and empirically demonstrate their applicability to practical pattern classification problems. Additionally, we show how the incorporation of a local pruning step can eliminate several redundant neurons from MTiling-real networks.
机译:建构性学习算法为用于模式分类的近乎最小的神经网络体系结构的增量构建提供了一种有吸引力的方法。它们有助于克服在先验的固定网络体系结构中搜索合适权重的算法中对网络拓扑的即席选择和通常不适当选择的需求。文献中提出了几种这样的算法,并且在涉及学习二进制到二进制映射的任务(即,涉及二进制值输入属性和两个输出类别的分类问题)上,收敛到零分类错误(在某些假设下)。我们提出了两种构造学习算法,即MPyramid-real和MTiling-real,分别扩展了金字塔和切片算法,以学习从实数到M元映射(即涉及实值输入属性和多个输出类别的分类问题)。我们证明了这些算法的收敛性,并通过经验证明了它们在实际模式分类问题中的适用性。此外,我们展示了本地修剪步骤的合并如何从MTiling-real网络中消除几个冗余神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号