首页> 外文OA文献 >Encoded pattern classification using constructive learning algorithms based on learning vector quantization
【2h】

Encoded pattern classification using constructive learning algorithms based on learning vector quantization

机译:使用基于学习矢量量化的构造学习算法进行编码模式分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel encoding technique is proposed for the recognition of patterns using four different techniques for training artificial neural networks (ANNs) of the Kohonen type. Each template or model pattern is overlaid on a radial grid of appropriate size, and converted to a two-dimensional feature array which then acts as the training input to the ANN. The first technique employs Kohonen's self-organizing network, each neuron of which is assigned, after training, the label of the model pattern. It is found that a graphical plot of the labels of the neurons exhibits clusters (which means in effect that the feature array pertaining to distorted versions of the same pattern belongs to a specific cluster), thereby justifying the coding strategy used in this paper. When the new, unknown pattern is input to the network, it is classified to have the same label of the neuron whose corresponding model pattern is closest to the given pattern. In an attempt to reduce the computational time and the size of the network, and simultaneously improve accuracy in recognition, Kohonen's learning vector quantization (LVQ) algorithm is used to train the ANN. To further improve the network's performance and to realize a network of minimum size, two constructive learning algorithms, both based on LVQ, are proposed: (1) multi-step learning vector quantization (MLVQ), and (2) thermal multi-step learning vector quantization (TLVQ). When the proposed algorithms are applied to the classification of noiseless and noisy (and distorted) patterns, the results demonstrate that the pattern encoding strategy and the suggested training techniques for ANNs are efficient and robust. For lack of space, only the most essential results are presented here. For details, see Ganesh Murthy and Venkatesh.
机译:提出了一种新颖的编码技术,用于使用四种不同的技术来训练Kohonen类型的人工神经网络(ANN),从而识别模式。每个模板或模型模式都覆盖在适当大小的径向网格上,并转换为二维特征数组,然后将其用作ANN的训练输入。第一种技术采用Kohonen的自组织网络,在训练后为其模型的标签分配了每个神经元的神经元。发现神经元标签的图形图显示出簇(实际上意味着与同一模式的变形版本有关的特征数组属于特定簇),从而证明了本文中使用的编码策略的合理性。当新的未知模式输入到网络时,将其分类为具有与相应模型模式最接近给定模式的神经元相同的标签。为了减少计算时间和网络规模,同时提高识别的准确性,Kohonen的学习矢量量化(LVQ)算法用于训练ANN。为了进一步提高网络性能并实现最小尺寸的网络,提出了两种均基于LVQ的建设性学习算法:(1)多步学习矢量量化(MLVQ)和(2)热多步学习向量量化(TLVQ)。当将所提出的算法应用于无噪声和噪声(和失真)模式的分类时,结果表明,模式编码策略和所提出的针对人工神经网络的训练技术是有效且鲁棒的。由于篇幅所限,这里只给出最基本的结果。有关详细信息,请参见Ganesh Murthy和Venkatesh。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号