首页> 外文期刊>IEEE Transactions on Neural Networks >A recurrent neural network for solving Sylvester equation with time-varying coefficients
【24h】

A recurrent neural network for solving Sylvester equation with time-varying coefficients

机译:求解时变系数的Sylvester方程的递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

Presents a recurrent neural network for solving the Sylvester equation with time-varying coefficient matrices. The recurrent neural network with implicit dynamics is deliberately developed in the way that its trajectory is guaranteed to converge exponentially to the time-varying solution of a given Sylvester equation. Theoretical results of convergence and sensitivity analysis are presented to show the desirable properties of the recurrent neural network. Simulation results of time-varying matrix inversion and online nonlinear output regulation via pole assignment for the ball and beam system and the inverted pendulum on a cart system are also included to demonstrate the effectiveness and performance of the proposed neural network.
机译:提出了一种递归神经网络,用于求解时变系数矩阵的Sylvester方程。故意开发具有隐式动力学的递归神经网络,以确保其轨迹以指数形式收敛到给定Sylvester方程的时变解。给出了收敛性和敏感性分析的理论结果,以显示递归神经网络的理想特性。还包括时变矩阵求逆和球杆系统的极点分配和在线推车系统上的倒立摆的在线非线性输出调节的仿真结果,以证明所提出的神经网络的有效性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号